Chapter 3: Polynomial Partitioning

نویسنده

  • Adam Sheffer
چکیده

Consider a set P of m points in R. Given a polynomial f ∈ R[x1, . . . , xd], we define the zero set of f to be Z(f) = {p ∈ R | f(p) = 0}. For any r > 1, we say that f ∈ R[x1, . . . , xd] is an r-partitioning polynomial for P if every connected component of R \ Z(f) contains at most m/r points of P.1 Notice that there is no restriction on the number of points of P that lie in Z(f). Figure 1 depicts a 2-partitioning polynomial for a set of 12 points in R.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chapter 6 : The Elekes - Sharir - Guth - Katz Framework

Guth and Katz’s seminal work on the number of distinct distances [4] was based on several novel ideas. One can regard their proof of as consisting of four main tools: (i) A reduction from the distinct distances problem to a problem about line intersections in R. This part is usually referred to as the Elekes-Sharir framework. We will refer to it as the Elekes-Sharir-Guth-Katz framework, for rea...

متن کامل

Haplotype Block Partitioning and tagSNP Selection under the Perfect Phylogeny Model

Single Nucleotide Polymorphisms (SNPs) are the most usual form of polymorphism in human genome.Analyses of genetic variations have revealed that individual genomes share common SNP-haplotypes. Theparticular pattern of these common variations forms a block-like structure on human genome. In this work,we develop a new method based on the Perfect Phylogeny Model to identify haplo...

متن کامل

Chapter 4: Constant-degree Polynomial Partitioning

To see the issues that arise when studying incidence problems in higher dimensions, we consider one of the simplest cases: Incidences between m points and n planes in R. To see that this problem is not interesting, we consider the following point-plane configuration. Let l ⊂ R be a line, let P be a set of m points on l, and let H be a set of n planes that contain l (e.g., see Figure 1). This co...

متن کامل

Approximation Schemes for the 3-Partitioning Problems

The 3-partitioning problem is to decide whether a given multiset of nonnegative integers can be partitioned into triples that all have the same sum. It is considerably used to prove the strong NP-hardness of many scheduling problems. In this paper, we consider four optimization versions of the 3-partitioning problem, and then present four polynomial time approximation schemes for these problems.

متن کامل

Matrix Partitioning: Optimal bipartitioning and heuristic solutions Master Thesis Scientific Computing

An important component of many scientific computations is the matrix-vector multiplication. An efficient parallelization of the matrix-vector multiplication would instantly lower computation times in many areas of scientific computing, and enable solving larger problems than is currently possible. A major obstacle in development of this parallelization is finding out how to distribute the matri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015